Coronary artery rupture during Optimization of Coronary Stents Using High-Pressure-Balloon Inflations: A treatable nightmare?

C.GRAIDIS, D.DIMITRIADIS, V.PSIFOS, V.KARASAVVIDIS, G.TSONIS, O.HALVATZOULIS

EUROMEDICA – KYANOUS STAVROS HOSPITAL
THESSALONIKI, GREECE

9o PANHELLENIC CONGRESS Of Hellenic Society of Thoracic and Cardiovascular Surgeons
Thessaloniki 23-24 November 2012
Background

Iatrogenic coronary perforation complicates 0.1-0.8% of percutaneous coronary interventional procedures and is associated with high mortality and morbidity.

When coronary perforation occurs, it may rapidly result in cardiac tamponade, myocardial infarction or death, hence prompt treatment is required.
CASE PRESENTATION

- 72 y.o female.
- Risk factors for IHD: Hypertension, Dyslipidaemia.
- DHx: Aspirin, Clopidogrel, statin, β-blocker, nitrate.
- Referred for cardiac catheterisation because of exertional angina and a strongly positive Exercise Tolerance Test.
Diagnostic coronary angiogram

LMS: Normal
LAD: Severe proximal and mid-vessel disease
Cx: Normal RCA: Mild irregularities
- Heparin 6,000 IU.
- Two overlapping 3.0x32 and 3.5x24mm Taxus stents were directly implanted.
- Due to underexpansion of the distal stent, we decided to perform postdilatation.
What balloon would you choose for post-dilatation?

- Non-compliant balloon 3.5mm?
- Non-compliant balloon 3.0mm?
- Balloon of the proximal stent (3.5mm)?
Immediately after postdilatation with the 3.5 x 24mm balloon (of the proximal stent) at 16 Atm...

Sudden cardiovascular collapse
The patient developed chest pain and dyspnoea. Blood pressure dropped to 74/52mmHg - cardiac tamponade.

Severe perforation of the LAD with contrast extravasation (Ellis type III perforation)
How would you manage this complication?

1. Call the surgeons
2. Balloon inflation, emergent pericardiocentesis, reversal of heparine.
3. Covered stents.

OR....
Pray Hard!!!!!!
Management of Coronary Perforation

Hemodynamic Support

- Volume, Inotropes
- Pericardiocentesis
- IABP

Seal Perforation

- Reverse heparin
- Balloon occlusion
- Platelets (abciximab)
- Embolization (coil, gel foam, thrombin)
- Covered stent
- Surgery

Javaid. Am J Cardiol 2006;98:911-914
- Prolonged balloon inflation to stop the leakage.
- Emergent Pericardiocentesis.
- Blood pressure increased to 94/72 mmHg.

Initial balloon dilatation can be done just at or proximal to the site of dye extravasation (many Type I and II perforations may seal off with prolonged balloon inflation alone but significant risk of late tamponade requires vigilant monitoring).
Two PTFE covered stents 3.0x16 and 3.5x12mm (Jostent graftmaster) were deployed. (Single guiding catheter used- Leak sealed, anticoagulation not reversed).
Coronary angiography 1 hr later, showing successful sealing of the perforation.
● Peak CK after the procedure was 450 U/L.

● The patient was discharged five days later and was advised to continue dual antiplatelet therapy indefinitely.

● Type III coronary artery perforations can be successfully managed by percutaneous methods.
PTFE COVERED STENT

The Jomed Covered Stent Graft is a balloon expandable, slotted tube stent comprising a layer of ultra-thin (75μm) PTFE graft material sandwiched between two stents of reduced wall thickness.

Shortening on expansion<3%. Mounted profile 1,6mm.

High pressure inflation(16 to 20Atm).
For most type III perforation, lower pressure balloon inflation is essential to prevent further leakage, tamponade or even death and should not be interrupted for a relatively long time.

The double guiding catheter technique gives the operator much enough easiness and time to deliver PTFE-covered stent while keeping the patient hemodynamically stable.
Ellis Classification

- **Grade I**: Extraluminal crater without extravasation
- **Grade II**: Pericardial or myocardial blush without contrast extravasation
- **Grade III**: Extravasation through frank (>1mm) perforation or cavity spilling into an anatomic cavity chamber

Javaid. *Am J Cardiol* 2006;98:911-914
Perforation Grade and Outcome

![Chart showing the percentage of patients with perforation grade I, II, and III for Tamponade, E-CABG, and Death (in hospital).]

Javaid. Am J Cardiol 2006;98:911-914
Outcomes After Perforation
(May 1996-May 2005)

Use of covered stent
Without use of covered stent

p=0.74

<table>
<thead>
<tr>
<th></th>
<th>Use of covered stent</th>
<th>Without use of covered stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamponade</td>
<td>15.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>CABG</td>
<td>31.0%</td>
<td>35.0%</td>
</tr>
<tr>
<td>Death</td>
<td>23.0%</td>
<td>15.0%</td>
</tr>
</tbody>
</table>

p=0.67
p=0.49

72 perforations/38559 cases = 0.19%

Javaid. Am J Cardiol 2006;98:911-914

Hellenic Institute of Cardiovascular Diseases
CONCLUSIONS

● In coronary perforations during percutaneous interventions, today coated stent implantation seems to be the first choice in treatment of coronary perforation considering the high mortality and morbidity rate of surgery.

● PTFE-covered stent implantation is easy, rapid and appears to offer the best treatment option for acute perforations.